- diagonal proof
- мат.диагональное доказательство
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Proof theory — is a branch of mathematical logic that represents proofs as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as plain lists, boxed… … Wikipedia
Diagonal method — may refer to: Diagonal Method, a rule of thumb in photography, painting and drawing Cantor s diagonal argument, a mathematical proof from 1891 that real numbers are not countable This disambiguation page lists articles associated with the same… … Wikipedia
Proof of impossibility — A proof of impossibility, sometimes called a negative proof or negative result , is a proof demonstrating that a particular problem cannot be solved, or cannot be solved in general. Often proofs of impossibility have put to rest decades or… … Wikipedia
Diagonal lemma — In mathematical logic, the diagonal lemma or fixed point theorem establishes the existence of self referential sentences in certain formal theories of the natural numbers specifically those theories that are strong enough to represent all… … Wikipedia
Cantor's diagonal argument — An illustration of Cantor s diagonal argument for the existence of uncountable sets. The sequence at the bottom cannot occur anywhere in the list of sequences above. Cantor s diagonal argument, also called the diagonalisation argument, the… … Wikipedia
Turing's proof — First published in January 1937 with the title On Computable Numbers, With an Application to the Entscheidungsproblem , Turing s proof was the second proof of the assertion (Alonzo Church proof was first) that some questions are undecidable :… … Wikipedia
Cantor's first uncountability proof — Georg Cantor s first uncountability proof demonstrates that the set of all real numbers is uncountable. Cantor formulated the proof in December 1873 and published it in 1874 in Crelle s Journal [cite… … Wikipedia
Constructive analysis — In mathematics, constructive analysis is mathematical analysis done according to the principles of constructive mathematics. This contrasts with classical analysis, which (in this context) simply means analysis done according to the (ordinary)… … Wikipedia
Controversy over Cantor's theory — In mathematical logic, the theory of infinite sets was first developed by Georg Cantor. Although this work has found wide acceptance in the mathematics community, it has been criticized in several areas by mathematicians and philosophers. Cantor… … Wikipedia
uncountable — 1. noun An uncountable noun. 2. adjective a) So many as to be incapable of being counted. The reasons for our failure were as uncountable as the grains of sand on a beach. b) Incapable of being put into one to one … Wiktionary
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium